CORE discussion paper 2006/85 Nonparametric Density Estimation for Positive Time Series

نویسندگان

  • Taoufik Bouezmarni
  • Jeroen V.K. Rombouts
  • Luc Bauwens
  • Song Chen
  • Luc Devroye
  • Bruno Remillard
  • Jean-Marie Rolin
  • Ingrid Van Keilegom
چکیده

The Gaussian kernel density estimator is known to have substantial problems for bounded random variables with high density at the boundaries. For i.i.d. data several solutions have been put forward to solve this boundary problem. In this paper we propose the gamma kernel estimator as density estimator for positive data from a stationary α-mixing process. We derive the mean integrated squared error, almost sure convergence and asymptotic normality. In a Monte Carlo study, where we generate data from an autoregressive conditional duration model and a stochastic volatility model, we find that the gamma kernel outperforms the local linear density estimator. An application to data from financial transaction durations, realized volatility and electricity price data is provided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Estimation of Stationary Time Series: Recent Developments

Spectral analysis considers the problem of determining (the art of recovering) the spectral content (i.e., the distribution of power over frequency) of a stationary time series from a finite set of measurements, by means of either nonparametric or parametric techniques. This paper introduces the spectral analysis problem, motivates the definition of power spectral density functions, and reviews...

متن کامل

Wavelets and Nonparametric Function Estimation

The problem of nonparametric function estimation has received a substantial amount of attention in the statistical literature over the last 15 years. To a very large extent, the literature has described kernel-based convolution smoothing solutions to the problems of probability density estimation and nonlinear regression. Among the subcultures within this literature has been a substantial effor...

متن کامل

Asymptotic Theory for Local Time Density Estimation and Nonparametric Cointegrating Regression By

We provide a new asymptotic theory for local time density estimation for a general class of functionals of integrated time series. This result provides a convenient basis for developing an asymptotic theory for nonparametric cointegrating regression and autoregression. Our treatment directly involves the density function of the processes under consideration and avoids Fourier integral represent...

متن کامل

Nonparametric functionals of spectral distributions and their applications to time series analysis

There is a close analogy between empirical distributions of i.i.d. random variables and normalized spectral distributions of widesense stationary processes. Herein we make use of this analogy to develop nonparametric comparisons of two spectral distributions and nonparametric tests of stationarity versus change-point alternatives via spectral analysis of a time series. © 2006 Elsevier B.V. All ...

متن کامل

Nonparametric Estimation in a Stochastic Volatility Model

In this paper we derive nonparametric stochastic volatility models in discrete time. These models generalize parametric autoregressive random variance models, which have been applied quite successfully to financial time series. For the proposed models we investigate nonparametric kernel smoothers. It is seen that so-called nonparametric deconvolution estimators could be applied in this situatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006